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Introduction twc/2

The leptonic decay constants (e.g., fD, fDs
, fB and fBs

)
play an important role in extracting the CKM matrix
elements which are crucial for testing the flavor sector
of the standard model via the unitarity of CKM matrix.

Precise determinations of fD+ and fD+
s

will result from
the high-statistics program of CLEO-c, however, the
determination of fB and fBs

remains beyond the reach of
current experiments. Thus lattice QCD determinations
of fB and fBs

are of fundamental importance.

Obviously, the first step for lattice QCD is to check
whether lattice determinations of fD+ and fD+

s
can give

a reliable prediction of the values coming from CLEO-c.



Introduction (cont) twc/3

One of the basic objectives of lattice QCD is to

compute hadron masses (and decay constants)

nonperturbatively from the first principles.

For hadrons only composed of s and c quarks,

their masses and decay constants can be

measured directly with accessible lattice sizes.

However, for hadrons containing u, d light quarks,

the performance of the present generation of

computers is still inadequate for computing their

masses at the physical limit (mπ � 135 MeV).

Thus chiral extrapolation is required.



Introduction (cont) twc/4

A strategy for hadrons containing u,d,s,c:

• Compute time-correlation functions

• From Cπ(t), fπ = 131 MeV fixes a−1

• From Cρ(t), φ(1020) fixes ms, J/ψ(3097) fixes mc

• For hadrons containing u, d quarks, chiral extrap. to

mπ = 135 MeV

Then the masses and other phys. quantities

of any hadrons containing c, s, u, d quarks are

predictions of QCD from the first principles.



Introduction (cont) twc/5

Theoretically, the proper way to proceed is to

use lattice fermions which preserve chiral sym

exactly at finite a. Then the quark propagator

is in the form (Dc +mq)−1, where Dc satisfies

Dcγ5 + γ5Dc = 0, and

(Dc +mq)
−1 a→0−→ [γμ(∂μ + iAμ) +mq]

−1

Thus the bare quark mass mq is well-defined

for any gauge configurations.



Optimal Domain-Wall Fermion [TWC,’02,’03] twc/6

Af =
Ns+1∑
s,s′=0

∑
x,x′

ψ̄(x, s)[(1 + ωsDw)x,x′δs,s′

−(1 − ωsDw)x,x′(P−δs′,s+1 + P+δs′,s−1)]ψ(x′, s′)

with boundary conditions (mq : bare quark mass)

P+ψ(x,−1) = −rmqP+ψ(x,Ns + 1), r =
1

2m0

P−ψ(x,Ns + 2) = −rmqP−ψ(x,0), P± =
1 ± γ5

2

where Dw is the Wilson Dirac op. plus −m0 ∈ (−2,0),
and {ωs} are weights specified by the exact formula

ωs =
1

λmin

√
1 − κ′2sn2(vs;κ

′), s = 1, · · · , Ns

ω0 = ωNs+1 = 0

such that Dc possesses the maximal chiral sym for any
given Ns and gauge background



Optimal Domain-Wall Fermion (cont) twc/7

Quark fields are defined by the boundary modes:

q(x) =
√
r[P−ψ(x,0) + P+ψ(x,Ns + 1)]

q̄(x) =
√
r[ψ̄(x,0)P+ + ψ̄(x,Ns + 1)P−]

After introducing pseudofermions with mq = 2m0, the
generating function for n-point function of q and q̄ is

Z[J, J̄] =

∫
[dU]e−AG[U ] detD(mq) eJ̄(Dc+mq)−1J∫

[dU]e−AG[U ] detD(mq)

where Ag is the gauge action, and

D(mq) = (Dc +mq)(1 + rDc)
−1

Dc = 2m0
1 + γ5S(Hw)

1 − γ5S(Hw)

S(Hw) =
1 −

∏Ns+1

s=0
Ts

1 +
∏Ns+1

s=0
Ts

Ns→∞−→ Hw√
H2
w

⇒ Dcγ5 + γ5Dc = 0

Ts =
1 − ωsHw

1 + ωsHw
, Hw = γ5Dw,

The quark propagator in background gauge field is

〈q(x)q̄(y)〉 = − δ2Z[J, J̄]

δJ̄(x)δJ(y)

∣∣∣∣
J=J̄=0

= (Dc +mq)
−1
x,y



A Scheme to Compute Propagators twc/8

Since

(Dc +mq)
−1 =

(
1 − mq

2m0

)−1 [
D−1(mq) − 1

2m0

]
where

D(mq) = mq + (m0 −mq/2)[1 + γ5S(Hw)]

Thus (Dc +mq)−1 can be obtained by solving

D(mq)Y = 1I

with nested conjugate gradient, which turns out to be

highly efficient (in terms of precision of chirality vs. CPU

time and memory storage) if the inner CG loop is

iterated with Neuberger’s double pass algorithm.

[Neuberger,’98, TWC & Hsieh,’03]



Lattice setup twc/9

We generate 100 gauge confs with single plaquette
action at β = 6.1 on 203 × 40 lattice.

Fixing m0 = 1.3, we project out 16 low-lying eigenmodes
of |Hw| and perform the nested conjugate gradient in
the complement of the vector space spanned by these
eigenmodes.

For Ns = 128, the weights {ωs} are fixed with

λmin = 0.18 and λmax = 6.3 for all gauge confs.



Quark Propagators with Exact Chiral Sym twc/10

For each conf, quark prop. are computed for 30 quark
masses in the range 0.03 ≤ mqa ≤ 0.8, with stopping
criteria 10−11 (2 × 10−12) for outer (inner) CG.

Then chiral sym breaking due to finite Ns(= 128) is

σ =

∣∣∣∣Y †S2Y

Y †Y
− 1

∣∣∣∣ < 10−14

The norm of the residual vector for each column is

||(Dc +mq)Y − 1I|| < 2 × 10−11

The quark propagators are computed with a Linux PC

cluster (with 100 nodes), in which each node computes

1 column for 30 quark masses simultaneously.



Determination of a twc/11

We measure the pion time correlation function

Cπ(t) =

〈∑
�x

tr
{
γ5(Dc +mq)

−1(0, x)γ5(Dc +mq)
−1(x,0)

}〉
U

=

〈∑
�x

tr
{[

(Dc +mq)
−1ab

αβ(x,0)
]∗

(Dc +mq)
−1ab

αβ(x,0)
}〉

U

which is fitted to

Z

2mπa
[e−mπat + e−mπa(T−t)]

to extract pion mass mπa and decay constant

fπa = 2mqa

√
Z

(mπa)2
.



Determination of a (cont) twc/12

mqa
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Wilson, β=6.1
100 confs.

fπa = 0.059(2) + 0.235(38) x mqa
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203 x 40
Wilson, β = 6.1
100 configs.

(mπa)2 = A1 (mqa)1/(1+δ) + B (mqa)2

δ  = 0.187(21)
A1= 0.699(45)
B = 2.666(357)

Taking fπa at mqa = 0 equal to 0.131 GeV times a,

a−1 =
0.131

f0
= 2.237(76) (GeV)

a = 0.088(3) fm



Determination of ms and mc twc/13

mπ(GeV)
0.22 0.45 0.67 0.89 1.12

m
ρ(

G
eV

)

0.67

0.89

1.12

1.34

1.57
mρa = 0.324(3) + 0.231(17) x (mπa) 

           + 0.718(27) x (mπa)2 

           - 0.222(12) x (mπa)3

mρ = 761(9) -- ρ(770)0.761

Extract the mass of vector meson from

CV (t) =

〈
1

3

3∑
μ=1

∑
�x

tr{γμ(Dc +mq)
−1
x,0γμ(Dc +mq)

−1
0,x}

〉
U

At mqa = 0.08, MV = 1029(10) MeV, in good agreement with
φ(1020). Thus we fix msa = 0.08. At mqa = 0.8, MV = 3060(5)
MeV, in good agreement with J/Ψ(3097). Thus, we fix mca = 0.8.



Pseudoscalar decay constant twc/14

The decay constant fP for a charged pseudoscalar
meson P is defined by

〈0|Aμ(0)|P (�q)〉 = fPqμ

where Aμ = q̄γμγ5Q is the axial-vector part of the
charged weak current after a CKM matrix element Vqq′
has been removed.

Using ∂μAμ = (mq +mQ)q̄γ5Q, one obtains

fP = (mq +mQ)
|〈0|q̄γ5Q|P (�0)〉|

m2
P



Pseudoscalar decay constant (cont) twc/15

We measure the pseudoscalar time-correlation function

CP(t) =

〈∑
�x

tr
{
γ5(Dc +mQ)

−1(0, x)γ5(Dc +mq)
−1(x,0)

}〉
U

=

〈∑
�x

tr
{[

(Dc +mQ)
−1ab

αβ(x,0)
]∗

(Dc +mq)
−1ab

αβ(x,0)
}〉

U

which is fitted to

Z

2mPa
[e−mPat + e−mPa(T−t)]

to extract pseudoscalar mass mPa and decay constant

fPa = (mq +mQ)a

√
Z

(mPa)2
.



mK twc/16

mπ(GeV)

0.22 0.45 0.67 0.89

m
K
(G

eV
)

0.34

0.45

0.56

0.67

0.78

0.89

203 x 40, β = 6.1
100 configs.

mKa = 0.197(1) + 0.255(4) x (mπa) 

          + 0.389(8) x (mπa)2

The data of mKa can be fitted by

mKa = 0.197(1) + 0.255(4)(mπa) + 0.389(8)(mπa)2 .

At mπ = 135 MeV, mK = 478(16) MeV. [PDG: mK = 495 MeV]



fK+ twc/17

mqa

0.00 0.02 0.04 0.06 0.08 0.10

fΚa

0.04

0.06

0.08

0.10

203 x 40, β=6.1
100 confs.

fKa = 0.068(0) + 0.116(1) x mqa

The data of fKa is well fitted by

fKa = 0.068(0) + 0.116(1)× (mqa)

At mqa = 0, fK+ = 150(6) MeV. [PDG: fK+ = 159.8(1.4)(0.44)]



fK/fπ twc/18

r = mq / ms
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The data of fK+/fπ can be fitted by

0.669(22) +
0.931(116)

1.813(163) + r

At r = 1/26, it gives fK+/fπ = 1.17(6) [ ∼ 1.22 (PDG)]

fπ = 131 MeV (input) ⇒ fK+ = 153(8) MeV



D(1865), Ds(1968) and ηc(2980) twc/19

mπ(GeV)

0.22 0.45 0.67 0.89

m
D
(G

eV
)

1.68

1.79

1.90

2.01

2.13

203 x 40, β = 6.1
100 configs.

mDa = 0.816(0) + 0.101(3) x (mπa) 

          + 0.298(6) x (mπa)2

mπ(GeV)

0.45 0.89 1.34 1.79 2.24 2.68 3.13

m
D
(G

eV
)

1.79

2.24

2.68

3.13

203 x 40, β = 6.1
100 configs.

mDa = c0 + c1(mπa) + c2(mπa)2+c3(mπa)3

c0 = 0.814(1)  
c1 = 0.099(6)
c2 = 0.362(10)
c3 = -0.113(5)

The data of mDa (0.03 ≤ mqa ≤ 0.08) is well fitted by

mDa = 0.816(0) + 0.101(3)× (mπa) + 0.298(6)× (mπa)
2

At mπ = 135 MeV, it gives mD = 1842(15) MeV.

At mqa = msa = 0.08, mDsa = 0.8778(24) ⇒ mDs = 1964(5) MeV.

At mqa = mca = 0.80, mηca = 1.3160(17) ⇒ mηc = 2944(4) MeV.



fD+ and fD+
s

twc/20

mqa

0.00 0.02 0.04 0.06 0.08 0.10

fDa

0.08

0.10

0.12

0.14

fDa = 0.105(1) + 0.172(1) x mqa

203 x 40, β=6.1
100 confs.

At mqa = msa = 0.08, fDs
a = 0.119(2), it gives

fD+
s
= 266(10) MeV [PDG: fD+

s
= 267 ± 33 MeV]



fD+ and fD+
s

(cont) twc/21

mqa

0.00 0.02 0.04 0.06 0.08 0.10

fDa

0.08

0.10

0.12

0.14

fDa = 0.105(1) + 0.172(1) x mqa

203 x 40, β=6.1
100 confs.

The data of fDa is well fitted by

fDa = 0.105(1) + 0.172(1)× (mqa)

At mqa = 0, fD+ = 235(8) MeV (hep-ph/0506266, June 26, 2005)

[CLEO: fD+ = 223 ± 16+7
−9 MeV (Lepton-Photon, July 1, 2005)]



fDs/fD twc/22

r = mq / ms

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
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fDs
 

_
fD 

The data of fD+
s
/fD+ can be fitted by

8.658(27)

7.657(26) + r

At r = 1/26, it gives fD+
s
/fD+ = 1.13(2)



Summary twc/23

Our predictive results (hep-ph/0506266) on June 26:

mK = 478 ± 16 ± 20 MeV
mDs

= 1964 ± 5 ± 10 MeV
mD = 1842 ± 15 ± 21 MeV
fK+ = 152 ± 6 ± 10 MeV
fD+

s
= 266 ± 10 ± 18 MeV

fD+ = 235 ± 8 ± 14 MeV

where the first error is statistical, while the second

is crude estimate of combined systematic uncertainty.

Here the discretization error is estimated by comparing

results to those from an ensemble of 221 gauge confs

on 163 × 32 at β = 6.0 with a−1 = 1.979(6) GeV.

[CLEO: fD+ = 223 ± 16+7
−9 MeV, Lepton-Photon 2005, July 1]

[CLEO: fD+ = 222.6 ± 16.7+2.8
−3.4 MeV, hep-ex/0508057]


